Selected Publications

# outcome of supervised thesis. * equal contribution.

  1. Choo, B., Barnes, S. and Sive, H. Metabolic Contributions to 16p11.2 Deletion Syndrome Phenotypes: A Hypothesis. In preparation.
  2. Saxena, M., Barnes, S., Tomasello, D.L., Gallego, I., McCammon, J.M, Sive, H.
    fam57b, a 16p11.2 disease-risk homolog, mediates dose responsive modulation of body size and changes in gene expression across multiple tissues. In preparation. 
  3. Tomasello,, D.L,  Kim, J.L., Khodour, Y., McCammon, J.M., Mitalipova, M., Rudolf Jaenisch, R., Futerman,  A.H., Sive, H. 16pdel lipid changes in iPSC-derived neurons and function of FAM57B in lipid metabolism and synaptogenesis. iScience. 2021 Dec 2;25(1):103551. eCollection 2022 Jan 21.PMID: 34984324
  4. #Chen, J. Saldanha, F., Tran, T.H., Vleminckx, K. and Sive, H. Regulation of head size by the Extreme Anterior Domain, a target for microcephaly. iScience, under revision https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3519574
  5. Tomasello DL, Sive H. Noninvasive Multielectrode Array for Brain and Spinal Cord Loccal Field Potential Recordings from Live Zebrafish Larvae. Zebrafish. 17(4):271-277, 2020.
  6. *Fame, R.M.,*Cortes-Campos, C. and Sive. H. Brain Ventricular System and Cerebrospinal Fluid Development and Function: Light at the End of the Tube. BioEssays. 42(3): e1900186, 2020.
  7. *Gutzman J.H., #*Graeden E., Brachmann I., Yamazoe S., Chen J.K., Sive H.
    Basal constriction during midbrain-hindbrain boundary morphgenesis is mediated by Wnt5b and focal adhesion kinase. Biol Open. 7(11). doi: 10.1242/bio.034520, 2018.
  8. #Chen, GR, Sive, H, and Bartel, DP. A Seed Mismatch Enhances Argonaute2-Catalyzed Cleavage and Partially Rescues Severely Impaired Cleavage Found in Fish. Molecular Cell, Dec 21 2017.
  9. McCammon, J.M., Blaker-Lee, A., Chen, X. and Sive, H.  The 16p11.2 homologs fam57ba and doc2a generate certain brain and body phenotypes, Hum. Mol. Genet. 26: 3699–3712, 2017.
  10. #*Chen, J., #*Jacox, L., #*Saldanha, F. and Sive, H. Mouth Development. WIRES Developmental Biology, 2017.
  11. #*Jacox, L., #Chen, J., Rothman, A., Lathrop-Marshall, H. and Sive, H.  Formation of a ‘pre-mouth  array’ from the extreme anterior domain is directed by neural crest and Wnt/PCP signaling.  Cell Rep. 16: 1445-55, 2016. 
  12. Fame, R.M., #Chang, J.T., Hong, A., Aponte-Santiago, N.A. and Sive, H.  Directional cerebrospinal fluid movement between brain ventricles in larval zebrafish. Fluids Barriers CNS 13: 11, 2016.
  13. #Chang, J.T., Lehtinen, M.K. and Sive, H.  Zebrafish cerebrospinal fluid mediates cell survival through a retinoid signaling pathway.  Dev. Neurobiol., 76: 75-92, 2016.
  14. McCammon, JM and Sive H. Challenges in understanding psychiatric disorders and developing therapeutics: a role for zebrafish. Disease Model Mech. 8: 647-56, 2015.
  15. McCammon, JM and Sive H. Addressing the genetics of human mental health disorders in model organisms. Ann. Rev. Genomics Human Genet. 16: 173-97, 2015.
  16. #Jacox, L., Sindelka, R., #Chen, J., Rothman, A., Dickinson, A. and Sive, H. The extreme anterior domain is an essential craniofacial organizer acting through Kinin-Kallikrein signaling. Cell Rep. 8: 596-609, 2014. 
  17. Subtelny, A.O., #Eichhorn, S.W., #Chen, G.R., Sive, H. and Bartel, D.P.  Poly(A)-tail profiling revealsan embryonic switch in translational control.  Nature 508: 66-71, 2014.
  18. #Jacox, L., Dickinson, A. and Sive, H. Facial Transplants in Xenopus laevis Embryos.  J.Vis. Exp. 85, e50697, doi:10.3791/50697, 2014.
  19. #Chang, J.T. and Sive, H.  An assay for permeability of the zebrafish embryonic neuroepithelium, JoVE, 2012.
  20. #Chang, J.T. and Sive, H. Manual drainage of the zebrafish embryonic cerebrospinal fluid, JoVE, 2012.
  21. #Chang, J.T., #Lowery. L.A., and Sive, H.  Multiple roles for the Na,K-ATPase subunits, Atp1a1 and Fxyd1, during brain ventricle development.  Dev. Biol.  368: 312-322, 2012. 
  22. De Rienzo, G., Gutzman, J. and Sive, H.  Efficient shRNA-mediated inhibition of gene expression in zebrafish.  Zebrafish 9: 97-107, 2012.
  23. *Blaker-Lee, A., *Gupta, S., *McCammon, J., De Rienzo, G. and  Sive, H.   Zebrafish homologs of genes within 16p11.2, a genomic region associated with brain disorders, are active during brain development, and include two deletion dosage sensor genes. Dis. Model. Mech.  5: 834-851, 2012. #Equal first authors.
  24. Singh, K.K., De Rienzo,G., Drane, L., Mao ,Y., Flood, Z., Madison, J., Ferreira, M., Bergen, S., King, C., Sklar, P., Sive, H., Tsai, L.H. Common DISC1 polymorphisms disrupt Wnt/GSK3β signaling and brain development.  Neuron 72: 545-558, 2011.
  25. Ulitsky, I., Shkumatava, A., Jan, C.H., Sive, H. and Bartel, D.P.  Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution.  Cell 147: 1537-1550, 2011.
  26. De Rienzo, G., Bishop, J., Mao, Y., Pan, L., Ma, T.P., Moens, C.B., Tsai, L.H., and Sive, H.  Disc1 regulates both β-catenin-mediated and non-canonical Wnt signaling during vertebrate embryogenesis. FASEB J. 25: 4184-97, 2011.
  27. Gutzman, J.H. and Sive, H.   Epithelial relaxation, mediated by the myosin phosphatase regulator mypt1, is required for brain ventricle lumen expansion, and hindbrain morphogenesis.  Development 137: 795-804, 2010.
  28. #Lowery, L.A. and Sive, H. Totally tubular: The mystery behind function and origin of the brain ventricular system. BioEssays 31: 446-58, 2009.
  29. Dickinson, A. and Sive. H.  The Wnt antagonists, Frzb-1 and Crescent, locally regulate basement membrane dissolution in the developing primary mouth. Development 136: 1071-81, 2009.
  30. #Graeden, E. and  Sive H. Live imaging of the zebrafish embryonic brain by confocal microscopy. JoVE. 26. http://www.jove.com/index/Details.stp?ID=1217, doi: 10.3791/1217, 2009.
  31. Gutzman J.H., Sive H. Zebrafish brain ventricle injection. JoVE. 26. http://www.jove.com/index/Details.stp?ID=1218, doi: 10.3791/1218, 2009.
  32. *Gutzman, J.H., #*Graeden, E.G., #Lowery, L.A., Holley, H.S. and Sive, H.  Formation of the zebrafish midbrain-hindbrain boundary constriction requires laminin-dependent basal constriction. Mech. Dev. 125: 974-983, 2008.  #Equal first authors.
  33. Dickinson, A. and Sive, H. Positioning the extreme anterior in Xenopus: cement gland, primary mouth and anterior pituitary.  Semin. Cell Dev. Biol.  18: 525-533, 2007.
  34. #Lowery, L.A., Rubin, J. and Sive,  H.  whitesnake/sfpq is required for cell survival and neuronal development in the zebrafish. Dev. Dynamics 236: 1347-57, 2007.
  35. Dickinson, A. and Sive. H.  Development of the primary mouth in Xenopus laevis.  Dev. Biol.  295: 700-713, 2006.
  36. #Lowery, L.A. and Sive, H.  Initial formation of zebrafish brain ventricles occurs independently of circulation and requires the nagie oko and snakehead/atp1a1a.1 gene products.  Development, 132: 2057-2067, 2005.
  37. Wiellette, E.L. and Sive, Hvhnf1 and FGF signals synergize to specify rhombomere identity in the zebrafish hindbrain.  Development 130: 3821-3829, 2003.
  38. Wardle, F., #Wainstock, D. and Sive, H.  Cement gland-specific activation of the Xag1 promoter is regulated by co-operation of putative Ets and ATF/CREB transcription factors.  Development 129: 4387-4397, 2002.
  39. #Gammill, L. and Sive, Hotx2 expression in the ectoderm activates anterior neural determination and is required for Xenopus cement gland formation.  Dev. Biol. 240: 223-236, 2001.
  40. Sun, B.I., #Bush, S.M., Collins-Racie, L.A., LaVallie, E.R., DiBlasio-Smith, E.A., Wolfman, N.M., McCoy, J.M. and Sive, H.  derrière:  a TGFß family member required for posterior development in Xenopus.  Development 126: 1483-1494, 1999.
  41. Grinblat, J., #Gamse, J., Patel, M. and Sive, H.  Determination of the zebrafish forebrain: induction and patterning. Development 125: 4403-4416, 1998.
  42. #Kuo, J., Patel, M., #Gamse, J., Merzdorf, C., Liu, X. Apekin, V. and Sive, H. opl: a zinc finger protein that regulates neural determination and patterning in Xenopus. Development 125: 2867-2882, 1998.
  43. #Gammill, L. and Sive, H.   Identification of otx2 target genes and restrictions in ectodermal competence during Xenopus cement gland formation.  Development, 124: 471-481, 1997.
  44. Bradley, L., #Wainstock, D. and Sive, H.  Positive and negative signals modulate induction of the Xenopus cement gland.  Development, 122: 2739-2750, 1996.
  45. Sagerström, C., Grinblat, Y. and Sive, H.   Anteroposterior patterning in the zebrafish, Danio: an explant analysis reveals inductive and suppressive cell interactions. Development 122, 1873-1883, 1996.